Back to Search Start Over

ScatterNet: A Deep Subjective Similarity Model for Visual Analysis of Scatterplots.

Authors :
Ma, Yuxin
Tung, Anthony K. H.
Wang, Wei
Gao, Xiang
Pan, Zhigeng
Chen, Wei
Source :
IEEE Transactions on Visualization & Computer Graphics; Mar2020, Vol. 26 Issue 3, p1562-1576, 15p
Publication Year :
2020

Abstract

Similarity measuring methods are widely adopted in a broad range of visualization applications. In this work, we address the challenge of representing human perception in the visual analysis of scatterplots by introducing a novel deep-learning-based approach, ScatterNet, captures perception-driven similarities of such plots. The approach exploits deep neural networks to extract semantic features of scatterplot images for similarity calculation. We create a large labeled dataset consisting of similar and dissimilar images of scatterplots to train the deep neural network. We conduct a set of evaluations including performance experiments and a user study to demonstrate the effectiveness and efficiency of our approach. The evaluations confirm that the learned features capture the human perception of scatterplot similarity effectively. We describe two scenarios to show how ScatterNet can be applied in visual analysis applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10772626
Volume :
26
Issue :
3
Database :
Complementary Index
Journal :
IEEE Transactions on Visualization & Computer Graphics
Publication Type :
Academic Journal
Accession number :
141514703
Full Text :
https://doi.org/10.1109/TVCG.2018.2875702