Back to Search
Start Over
Consistent floor response spectra for performance‐based seismic design of nonstructural elements.
- Source :
- Earthquake Engineering & Structural Dynamics; Mar2020, Vol. 49 Issue 3, p261-284, 24p
- Publication Year :
- 2020
-
Abstract
- Summary: The achievement of adequate performance objectives for buildings under increasing seismic intensities is not only related to the performance of structural members but also to the behavior of nonstructural elements. The need to properly design nonstructural elements for earthquakes has been largely demonstrated in the last few years and has become an important objective within the earthquake engineering community. A crucial aspect in the proper design of nonstructural elements is the definition of the seismic demand in terms of both absolute acceleration and relative displacement floor response spectra. In the first part of this study, relative displacement and absolute acceleration floor response spectra were computed for four reinforced concrete moment‐resisting archetype frames via dynamic time‐history analyses and were compared with floor response spectra predicted by means of two recent simplified methodologies available in the literature. It was observed that one of the existing methodologies is generally unable to predict consistent absolute acceleration and relative displacement floor response spectra. An improved procedure is developed for estimating consistent floor response spectra for building structures subjected to low and medium‐high seismic intensities. This new procedure improves the predictions of a relative displacement floor response spectrum by constraining its ordinates at long nonstructural periods to the expected peak absolute displacement of the floor. The resulting acceleration and relative displacement response spectra are then consistently related by the well‐known pseudo‐spectral relationship over the entire nonstructural period range. The effectiveness of the proposed methodology was appraised against floor response spectra computed from nonlinear time‐history analyses. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00988847
- Volume :
- 49
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Earthquake Engineering & Structural Dynamics
- Publication Type :
- Academic Journal
- Accession number :
- 141677142
- Full Text :
- https://doi.org/10.1002/eqe.3236