Back to Search Start Over

Wind-Thermal-Nuclear-Storage Combined Time Division Power Dispatch Based on Numerical Characteristics of Net Load.

Authors :
Sui, Xin
Lu, Shengyang
He, Hai
Zhao, Yuting
Hu, Shubo
Liu, Ziqian
Gu, Hong
Sun, Hui
Source :
Energies (19961073); Jan2020, Vol. 13 Issue 2, p364-364, 1p, 2 Diagrams, 7 Charts, 14 Graphs
Publication Year :
2020

Abstract

In order to satisfy the strategic needs of energy sustainable development, renewable energy has developed rapidly and the power systems have been transformed to a new generation of power systems. In the renewable energy power generation technologies, the fastest developing wind power generation are highly intermittent and fluctuating. When high penetration of renewable power connects to the power grid and participates in the system dispatch, there will be more difficulties and challenges in the energy balance control. In this paper, a wind-thermal-nuclear-storage combined time division power dispatch strategy based on numerical characteristics of net load is proposed, where a specific thermal generating mode and an unconventional nuclear generating mode are discussed. In the strategy, the dispatch time division method is introduced in detail and the sample entropy theory is used to calculate the net load complexity. An adaptive thermal generating mode is determined according to the numerical characteristics of the net load. The nuclear generating modes of constant power operation, time division operation, and net load tracking time division operation are compared and analyzed, respectively. Finally, the wind-thermal-nuclear-storage combined time division power dispatch strategy aiming at decreasing the ramping power of thermal generators is achieved, and the increasing of the participation of pumped storage and improving of the continuous and steady operation time of thermal generators are realized. The experiment simulation is developed on an actual provincial power system in the northeast of China. The results verify that the thermal generator ramping power in the case based on SampEn are reduced, and the participation of pumped storage is improved. When both of the thermal generating mode and nuclear generating mode are according to the changing of net loads, the ramping powers of thermal generators are further decreased. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
13
Issue :
2
Database :
Complementary Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
141760809
Full Text :
https://doi.org/10.3390/en13020364