Back to Search Start Over

Electrical Resistivity of Freezing Clay: Experimental Study and Theoretical Model.

Authors :
Ming, F.
Li, D. Q.
Chen, L.
Source :
Journal of Geophysical Research. Earth Surface; Feb2020, Vol. 125 Issue 2, p1-18, 18p
Publication Year :
2020

Abstract

Electrical resistivity of soil has become one of the most important indicators of compactness and compressive resistance. In previous studies, the temperature of soil tested was always above 0 °C. However, due to the phase change of pore water, the resistivity of freezing soils is different from that of unfrozen soils. Therefore, it is necessary to clarify the influence of temperature on electrical resistivity. To achieve this goal, according to the bundle of the cylindrical capillary model, pores in soil were treated as conducting tubes, and two simple lognormal functions were introduced to describe the distribution of the conducting tubes. Based on the conductivity theory, a new model considering the temperature and the pore size distribution was presented. Results show that only a part of the conducting tubes can be treated as the effective conducting tubes, which are determined by the soil temperature. Furthermore, a small portion of the pores with the smaller size controlled the electrical resistivity of the freezing clay. In other words, the change in the electrical resistivity of freezing clay was caused mainly by the change of unfrozen water content through the decrease in temperature. Based on the experimental results conducted on clay from Northeast China, the validity of the presented model was verified. The comparison results indicate that there was a good agreement between the calculated results and the experimental results. To expand the scope of the model, more laboratory tests are suggested to conduct to verify the applicability of the model to other clays. Key Points: The resistivity of freezing soil depends on the unfrozen water content which controlled by temperatureSmall portion of pore water with smaller size controls the electrical resistivity of freezing clayA resistivity model with the consideration of pore size distribution and temperature is presented [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21699003
Volume :
125
Issue :
2
Database :
Complementary Index
Journal :
Journal of Geophysical Research. Earth Surface
Publication Type :
Academic Journal
Accession number :
141914366
Full Text :
https://doi.org/10.1029/2019JF005267