Back to Search Start Over

Omniphobic ZIF‐8@Hydrogel Membrane by Microfluidic‐Emulsion‐Templating Method for Wound Healing.

Authors :
Yao, Xiaoxue
Zhu, Guoshuai
Zhu, Pingan
Ma, Jing
Chen, Wenwen
Liu, Zhou
Kong, Tiantian
Source :
Advanced Functional Materials; 3/24/2020, Vol. 30 Issue 13, p1-9, 9p
Publication Year :
2020

Abstract

Bacterial adhesion and colonization can result in chronic non‐healing wounds. Current hydrophilic wound dressings can release antibacterial agents into the wound exudate, but may result in overhydrated wounds, bacterial overgrowth, and even tissue maceration. Hydrophobic dressings are anti‐fouling, though ineffective to encapsulate and release bactericidal agents. Combining the advantages of hydrophilic and hydrophobic dressings seems difficult, until the development of superwettability surfaces offers an opportunity for omniphobic dressings from intrinsic hydrophilic polymers. Herein, omniphobic porous hydrogel wound dressings loaded with a zinc imidazolate framework 8 (ZIF‐8) are fabricated by a microfluidic‐emulsion‐templating method. The fabricated porous hydrogel membrane with its reentrant architecture is repellent to blood and body fluids, though intrinsically hydrophilic. This unique combination not only reduces the adhesion of harmful microbes, but also enables the encapsulation and release of antibacterial ingredients to wounded sites from hydrophilic polymer networks. As such, the omniphobic metal‐organic frameworks (MOFs)@hydrogel porous wound dressing can inhibit bacteria invasion and enable the controlled release of the bactericidal, anti‐inflammatory, and nontoxic zinc ions. Furthermore, in vivo study of infected full‐thickness skin defect models demonstrates that the dressing also accelerates wound closure by promoting angiogenesis and collagen deposition. Therefore, the omniphobic MOFs@hydrogel porous wound dressings are potentially useful for clinical application. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
30
Issue :
13
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
142423096
Full Text :
https://doi.org/10.1002/adfm.201909389