Back to Search Start Over

Transcription-coupled repair and mismatch repair contribute towards preserving genome integrity at mononucleotide repeat tracts.

Authors :
Georgakopoulos-Soares, Ilias
Koh, Gene
Momen, Sophie E.
Jiricny, Josef
Hemberg, Martin
Nik-Zainal, Serena
Source :
Nature Communications; 4/24/2020, Vol. 11 Issue 1, p1-9, 9p
Publication Year :
2020

Abstract

The mechanisms that underpin how insertions or deletions (indels) become fixed in DNA have primarily been ascribed to replication-related and/or double-strand break (DSB)-related processes. Here, we introduce a method to evaluate indels, orientating them relative to gene transcription. In so doing, we reveal a number of surprising findings: First, there is a transcriptional strand asymmetry in the distribution of mononucleotide repeat tracts in the reference human genome. Second, there is a strong transcriptional strand asymmetry of indels across 2,575 whole genome sequenced human cancers. We suggest that this is due to the activity of transcription-coupled nucleotide excision repair (TC-NER). Furthermore, TC-NER interacts with mismatch repair (MMR) under physiological conditions to produce strand bias. Finally, we show how insertions and deletions differ in their dependencies on these repair pathways. Our analytical approach reveals insights into the contribution of DNA repair towards indel mutagenesis in human cells. Indels that are commonly found in cancer genomes are characterized by non-random sequence composition and localisation. Here, the authors described a method to investigate transcriptional strand asymmetries and sequence-context specific mechanisms that alter the likelihood of insertions and deletions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
142886762
Full Text :
https://doi.org/10.1038/s41467-020-15901-w