Back to Search
Start Over
Microcluster-Based Incremental Ensemble Learning for Noisy, Nonstationary Data Streams.
- Source :
- Complexity; 5/5/2020, p1-12, 12p
- Publication Year :
- 2020
-
Abstract
- Data stream classification becomes a promising prediction work with relevance to many practical environments. However, under the environment of concept drift and noise, the research of data stream classification faces lots of challenges. Hence, a new incremental ensemble model is presented for classifying nonstationary data streams with noise. Our approach integrates three strategies: incremental learning to monitor and adapt to concept drift; ensemble learning to improve model stability; and a microclustering procedure that distinguishes drift from noise and predicts the labels of incoming instances via majority vote. Experiments with two synthetic datasets designed to test for both gradual and abrupt drift show that our method provides more accurate classification in nonstationary data streams with noise than the two popular baselines. [ABSTRACT FROM AUTHOR]
- Subjects :
- MACHINE learning
RIVERS
PLURALITY voting
LEARNING strategies
FORECASTING
LABELS
Subjects
Details
- Language :
- English
- ISSN :
- 10762787
- Database :
- Complementary Index
- Journal :
- Complexity
- Publication Type :
- Academic Journal
- Accession number :
- 143058275
- Full Text :
- https://doi.org/10.1155/2020/6147378