Back to Search Start Over

Efficient Organic Solar Cell with 16.88% Efficiency Enabled by Refined Acceptor Crystallization and Morphology with Improved Charge Transfer and Transport Properties.

Authors :
Zhu, Lei
Zhang, Ming
Zhou, Guanqing
Hao, Tianyu
Xu, Jinqiu
Wang, Jing
Qiu, Chaoqun
Prine, Nathaniel
Ali, Jazib
Feng, Wei
Gu, Xiaodan
Ma, Zaifei
Tang, Zheng
Zhu, Haiming
Ying, Lei
Zhang, Yongming
Liu, Feng
Source :
Advanced Energy Materials; 5/12/2020, Vol. 10 Issue 18, p1-9, 9p
Publication Year :
2020

Abstract

Single‐layered organic solar cells (OSCs) using nonfullerene acceptors have reached 16% efficiency. Such a breakthrough has inspired new sparks for the development of the next generation of OSC materials. In addition to the optimization of electronic structure, it is important to investigate the essential solid‐state structure that guides the high efficiency of bulk heterojunction blends, which provides insight in understanding how to pair an efficient donor–acceptor mixture and refine film morphology. In this study, a thorough analysis is executed to reveal morphology details, and the results demonstrate that Y6 can form a unique 2D packing with a polymer‐like conjugated backbone oriented normal to the substrate, controlled by the processing solvent and thermal annealing conditions. Such morphology provides improved carrier transport and ultrafast hole and electron transfer, leading to improved device performance, and the best optimized device shows a power conversion efficiency of 16.88% (16.4% certified). This work reveals the importance of film morphology and the mechanism by which it affects device performance. A full set of analytical methods and processing conditions are executed to achieve high efficiency solar cells from materials design to device optimization, which will be useful in future OSC technology development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
10
Issue :
18
Database :
Complementary Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
143170148
Full Text :
https://doi.org/10.1002/aenm.201904234