Back to Search Start Over

A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice.

Authors :
Zhang, Chao
Wei, Ying
Xu, Le
Wu, Kang-Cheng
Yang, Liang
Shi, Chao-Nan
Yang, Guo-Yi
Chen, Dong
Yu, Fei-Fei
Xie, Qi
Ding, Shou-Wei
Wu, Jian-Guo
Source :
Molecular Plant (Cell Press); Jun2020, Vol. 13 Issue 6, p836-850, 15p
Publication Year :
2020

Abstract

The ubiquitin-proteasome system (UPS) is an important post-translational regulatory mechanism that controls many cellular functions in eukaryotes. Here, we show that stable expression of P3 protein encoded by Rice grassy stunt virus (RGSV), a negative-strand RNA virus in the Bunyavirales , causes developmental abnormities similar to the disease symptoms caused by RGSV, such as dwarfing and excess tillering, in transgenic rice plants. We found that both transgenic expression of P3 and RGSV infection induce ubiquitination and UPS-dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of two orthologs of the largest subunit of plant-specific RNA polymerase IV (Pol IV), which is required for RNA-directed DNA methylation (RdDM). Furthermore, we identified a P3-inducible U-box type E3 ubiquitin ligase, designated as P3-inducible protein 1 (P3IP1), which interacts with OsNRPD1a and mediates its ubiquitination and UPS-dependent degradation in vitro and in vivo. Notably, both knockdown of OsNRPD1 and overexpression of P3IP1 in rice plants induced developmental phenotypes similar to RGSV disease symptomss. Taken together, our findings reveal a novel virulence mechanism whereby plant pathogens target host RNA Pol IV for UPS-dependent degradation to induce disease symptoms. Our study also identified an E3 ubiquitin ligase, which targets the RdDM compotent NRPD1 for UPS-mediated degradation in rice. The ubiquitin-proteasome system (UPS) regulates many cellular functions in eukaryotic cells. This study reveals that a Bunyavirus-encoded virulence protein, P3, promotes the UPS-mediated degradation of an RdDM component, OsNRPD1, via a U-box type E3 ubiquitin ligase P3IP1, leading to disease symptom development in rice. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16742052
Volume :
13
Issue :
6
Database :
Complementary Index
Journal :
Molecular Plant (Cell Press)
Publication Type :
Academic Journal
Accession number :
143473755
Full Text :
https://doi.org/10.1016/j.molp.2020.02.010