Back to Search Start Over

Anti‐liquid‐Interfering and Bacterially Antiadhesive Strategy for Highly Stretchable and Ultrasensitive Strain Sensors Based on Cassie‐Baxter Wetting State.

Authors :
Lin, Jing
Cai, Xianfang
Liu, Zili
Liu, Nan
Xie, Min
Zhou, BingPu
Wang, Huaquan
Guo, Zhanhu
Source :
Advanced Functional Materials; 6/4/2020, Vol. 30 Issue 23, p1-11, 11p
Publication Year :
2020

Abstract

As a large number of strain sensors are put into practical use, their stability should be considered, especially in harsh environments containing water or microorganisms, which could affect strain sensing. Herein, a novel strategy to overcome liquid interference is proposed. The strain sensor is constructed with a sandwich architecture through layer‐by‐layer (LBL) spray‐coating of a 3‐(aminopropyl)triethoxysilane (APTES) bonding layer and multi‐walled carbon nanotubes/graphene (MWCNT/G) conductive layers on an elastomeric polydimethysiloxane (PDMS) substrate, and is further decorated with silver (Ag) nanoparticles and the (heptadecafluoro‐1,1,2,2‐tetradecyl) trimethoxysilane (FAS, F in short) to obtain a F/Ag/MWCNG/G‐PDMS (FAMG) strain sensor. The superhydrophobicity and underwater oleophobicity of the outer cover layer causes this FAMG strain sensor surface to exhibit stable strain sensing resistant to liquid interference upon stretching in the Cassie−Baxter wetting state, and resistance to bacterial adhesion (Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)). The sensor attains ultrasensitivity (with a maximum gauge factor of 1989 in the condition of liquid interference), broad strain range (0.1–170%), fast response time (150 ms), and stable response after 1000 stretching–releasing cycles. The ultrasensitivity is provided by propagation of cracks in MWCNT/G conductive layers and terminal fracture of the intermediate separating layers (APTES/MWCNT/G). The microbridge effect of MWCNTs and slippage of APTES/MWCNT/G provide a large strain range. The FAMG strain sensor is successfully used to monitor a series of human activities and an electronic bird under artificial rain and bacterial droplets, indicating the potential use of this sensor in complex environments. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1616301X
Volume :
30
Issue :
23
Database :
Complementary Index
Journal :
Advanced Functional Materials
Publication Type :
Academic Journal
Accession number :
143594967
Full Text :
https://doi.org/10.1002/adfm.202000398