Back to Search Start Over

An Extended Framework of Privacy-Preserving Computation With Flexible Access Control.

Authors :
Ding, Wenxiu
Hu, Rui
Yan, Zheng
Qian, Xinren
Deng, Robert H.
Yang, Laurence T.
Dong, Mianxiong
Source :
IEEE Transactions on Network & Service Management; Jun2020, Vol. 17 Issue 2, p918-930, 13p
Publication Year :
2020

Abstract

Cloud computing offers various services based on outsourced data by utilizing its huge volume of resources and great computation capability. However, it also makes users lose full control over their data. To avoid the leakage of user data privacy, encrypted data are preferred to be uploaded and stored in the cloud, which unfortunately complicates data analysis and access control. In particular, few existing works consider the fine-grained access control over the computational results from ciphertexts. Though our previous work proposed a framework to support several basic computations (such as addition, multiplication and comparison) with flexible access control, privacy-preserving division calculations over encrypted data, as a crucial operation in many statistical processes and machine learning algorithms, is neglected. In this paper, we propose four privacy-preserving division computation schemes with flexible access control to fill this gap, which can adapt to various application scenarios. Furthermore, we extend a division scheme over encrypted integers to support privacy-preserving division over multiple data types including fixed-point numbers and fractional numbers. Finally, we give their security proof and show their efficiency and superiority through comprehensive simulations and comparisons with existing work. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19324537
Volume :
17
Issue :
2
Database :
Complementary Index
Journal :
IEEE Transactions on Network & Service Management
Publication Type :
Academic Journal
Accession number :
143742047
Full Text :
https://doi.org/10.1109/TNSM.2019.2952462