Back to Search
Start Over
On the topology of the space of Ricci-positive metrics.
- Source :
- Proceedings of the American Mathematical Society; Sep2020, Vol. 148 Issue 9, p3997-4006, 10p
- Publication Year :
- 2020
-
Abstract
- We show that the space R<superscript>pRc</superscript>(W<subscript>g</subscript><superscript>2n</superscript>) of metrics with positive Ricci curvature on the manifold W<subscript>g</subscript><superscript>2n</superscript> := ♯<superscript>g</superscript> (S<superscript>n</superscript> × S<superscript>n</superscript>) has nontrivial rational homology if n ≢ 3 (mod 4) and g are both sufficiently large. The same argument applies to R<superscript>pRc</superscript>(W<subscript>g</subscript><superscript>2n</superscript> ♯ N) provided that N is spin and W<subscript>g</subscript><superscript>2n</superscript> ♯ N admits a Ricci positive metric. [ABSTRACT FROM AUTHOR]
- Subjects :
- TOPOLOGY
SPACE
CURVATURE
ARGUMENT
HOMOLOGY theory
Subjects
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 148
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 144503617
- Full Text :
- https://doi.org/10.1090/proc/14988