Back to Search Start Over

On the topology of the space of Ricci-positive metrics.

Authors :
Botvinnik, Boris
Ebert, Johannes
Wraith, David J.
Source :
Proceedings of the American Mathematical Society; Sep2020, Vol. 148 Issue 9, p3997-4006, 10p
Publication Year :
2020

Abstract

We show that the space R<superscript>pRc</superscript>(W<subscript>g</subscript><superscript>2n</superscript>) of metrics with positive Ricci curvature on the manifold W<subscript>g</subscript><superscript>2n</superscript> := ♯<superscript>g</superscript> (S<superscript>n</superscript> × S<superscript>n</superscript>) has nontrivial rational homology if n ≢ 3 (mod 4) and g are both sufficiently large. The same argument applies to R<superscript>pRc</superscript>(W<subscript>g</subscript><superscript>2n</superscript> ♯ N) provided that N is spin and W<subscript>g</subscript><superscript>2n</superscript> ♯ N admits a Ricci positive metric. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
148
Issue :
9
Database :
Complementary Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
144503617
Full Text :
https://doi.org/10.1090/proc/14988