Back to Search Start Over

Online searching platform for the antibiotic resistome in bacterial tree of life and global habitats.

Authors :
Zhang, An Ni
Hou, Chen-Ju
Negi, Mishty
Li, Li-Guan
Zhang, Tong
Source :
FEMS Microbiology Ecology; Jul2020, Vol. 96 Issue 7, p1-10, 10p, 2 Diagrams, 1 Graph, 1 Map
Publication Year :
2020

Abstract

Metagenomic analysis reveals that antibiotic-resistance genes (ARGs) are widely distributed in both human-associated and non-human-associated habitats. However, it is difficult to equally compare ARGs between samples without a standard method. Here, we constructed a comprehensive profile of the distribution of potential ARGs in bacterial tree of life and global habitats by investigating ARGs in 55 000 bacterial genomes, 16 000 bacterial plasmid sequences, 3000 bacterial integron sequences and 850 metagenomes using a standard pipeline. We found that >80% of all known ARGs are not carried by any plasmid or integron sequences. Among potential mobile ARGs, tetracycline and beta-lactam resistance genes (such as tetA , tetM and class A beta-lactamase gene) distribute in multiple pathogens across bacterial phyla, indicating their clinical relevance and importance. We showed that class 1 integrases (intI1) display a poor linear relationship with total ARGs in both non-human-associated and human-associated environments. Furthermore, both total ARGs and intI1 genes show little correlation with the degree of anthropogenicity. These observations highlight the need to differentiate ARGs of high clinical relevance. This profile is published on an online platform (ARGs-OSP, http://args-osp.herokuapp.com/) as a valuable resource for the most challenging topics in this field, i.e. the risk, evolution and emergence of ARGs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01686496
Volume :
96
Issue :
7
Database :
Complementary Index
Journal :
FEMS Microbiology Ecology
Publication Type :
Academic Journal
Accession number :
144757396
Full Text :
https://doi.org/10.1093/femsec/fiaa107