Back to Search Start Over

Ecotoxicological assessments of biochar additions to soil employing earthworm species Eisenia fetida and Lumbricus terrestris.

Authors :
Elliston, Tom
Oliver, Ian W.
Source :
Environmental Science & Pollution Research; Sep2020, Vol. 27 Issue 27, p33410-33418, 9p
Publication Year :
2020

Abstract

Biochar is the degradation-resistant product generated by the pyrolysis of organic materials and is produced for the intended use of land application in order to promote carbon sequestration and soil improvement. However, despite the many potential benefits biochar application offers, it is important to quantify any ecological impacts that may result from soil amendment in order to avoid potentially causing negative effects upon soil biota which are crucial in the many ecosystem services provided by soil. Any impacts on earthworms in particular are important to evaluate because of their pivotal role in organic matter breakdown, nutrient cycling and soil formation. In this study, we conducted a series of ecotoxicological assays to determine lethal and sublethal (avoidance, mass change and moisture content) effects of heavy biochar applications that reflect levels that may be used in soil restoration efforts. Two earthworm species, Eisenia fetida, an epigeic species, and Lumbricus terrestris, an anecic species, were utilised as test organisms. Two types of biochar, produced from wheat straw and rice husk feedstocks, respectively, were applied to OECD artificial soil and to a natural soil (Kettering loam) at rates of up to 20% w/w. The influence of biochar application on soil porewater chloride, fluoride and phosphate concentrations was also assessed. The biochar applications induced only a subtle level of avoidance behaviour while effects on survival over a 4-week exposure period were inconsistent. However, death and physical damage to some individual earthworms at high biochar application rates were observed, the mechanisms and processes leading to which should be investigated further. Earthworm development (mean mass change over time) proved to be a more sensitive measure, revealing negative effects on L. terrestris at 10% and 20% (w/w) wheat biochar applications in OECD soil and at 20% (w/w) applications of both biochars in Kettering loam. The moisture content of E. fetida remained remarkably consistent across all treatments (~ 82%), indicating that this is not a sensitive measure of effects. The high rates of biochar application resulted in increased chloride (2 to 3-fold) and phosphate (100-fold) concentrations in simulated soil porewaters, which has important implications for soil fertility and production but also for environmental management. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09441344
Volume :
27
Issue :
27
Database :
Complementary Index
Journal :
Environmental Science & Pollution Research
Publication Type :
Academic Journal
Accession number :
145076945
Full Text :
https://doi.org/10.1007/s11356-019-04542-2