Back to Search Start Over

Structure and magnetism of the Rh4+-containing perovskite oxides La0.5Sr0.5Mn0.5Rh0.5O3 and La0.5Sr0.5Fe0.5Rh0.5O3.

Authors :
Hasanli, Nijat
Scrimshire, Alex
Bingham, Paul A.
Palgrave, Robert G.
Hayward, Michael A.
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry; 8/28/2020, Vol. 49 Issue 32, p11346-11353, 8p
Publication Year :
2020

Abstract

Synchrotron X-ray powder diffraction data indicate that La<subscript>0.5</subscript>Sr<subscript>0.5</subscript>Mn<subscript>0.5</subscript>Rh<subscript>0.5</subscript>O<subscript>3</subscript> and La<subscript>0.5</subscript>Sr<subscript>0.5</subscript>Fe<subscript>0.5</subscript>Rh<subscript>0.5</subscript>O<subscript>3</subscript> adopt distorted perovskite structures (space group Pnma) with A-site and B-site cation disorder. A combination of XPS and <superscript>57</superscript>Fe Mössbauer data indicate the transition metal cations in the two phases adopt Mn<superscript>3+</superscript>/Rh<superscript>4+</superscript> and Fe<superscript>3+</superscript>/Rh<superscript>4+</superscript> oxidation state combinations respectively. Transport data indicate both phases are insulating, with ρ vs. T dependences consistent with 3D variable-range hopping. Magnetisation data reveal that La<subscript>0.5</subscript>Sr<subscript>0.5</subscript>Mn<subscript>0.5</subscript>Rh<subscript>0.5</subscript>O<subscript>3</subscript> adopts a ferromagnetic state below T<subscript>c</subscript> ∼ 60 K, which is rationalized on the basis of coupling via a dynamic Jahn–Teller distortion mechanism. In contrast, magnetic data reveal La<subscript>0.5</subscript>Sr<subscript>0.5</subscript>Fe<subscript>0.5</subscript>Rh<subscript>0.5</subscript>O<subscript>3</subscript> undergoes a transition to a spin-glass state at T ∼ 45 K, attributed to frustration between nearest-neighbour Fe–Rh and next-nearest-neighbour Fe–Fe couplings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
49
Issue :
32
Database :
Complementary Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
145187770
Full Text :
https://doi.org/10.1039/d0dt02466j