Back to Search Start Over

Stepwise Assembly of an Electroactive Framework from a Co6S8 Superatomic Metalloligand and Cuprous Iodide Building Units.

Authors :
Freeman, Matthew B.
Edokobi, Ozioma D.
Gillen, Jonathan H.
Kocherga, Margaret
Dipple, Kathleen M.
Jones, Daniel S.
Paley, Daniel W.
Wang, Le
Bejger, Christopher M.
Source :
Chemistry - A European Journal; 10/1/2020, Vol. 26 Issue 55, p12523-12527, 5p
Publication Year :
2020

Abstract

The design of metal–organic frameworks (MOFs) that incorporate more than one metal cluster constituent is a challenging task. Conventional one‐pot reaction protocols require judicious selection of ligand and metal ion precursors, yet remain unpredictable. Stable, preformed nanoclusters, with ligand shells that can undergo additional coordination‐driven reactions, provide a platform for assembling multi‐cluster solids with precision. Herein, a discrete Co6S8(PTA)6 (PTA=1,3,5‐triaza‐7‐phosphaadamantane) superatomic‐metalloligand is assembled into a three‐dimensional (3D) coordination polymer comprising Cu4I4 secondary building units (SBUs). The resulting heterobimetallic framework (1) contains two distinct cluster constituents and bifunctional PTA linkers. Solid‐state diffuse reflectance studies reveal that 1 is an optical semiconductor with a band‐gap of 1.59 eV. Framework‐modified electrodes exhibit reversible redox behavior in the solid state arising from the Co6S8 superatoms, which remain intact during framework synthesis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09476539
Volume :
26
Issue :
55
Database :
Complementary Index
Journal :
Chemistry - A European Journal
Publication Type :
Academic Journal
Accession number :
146200781
Full Text :
https://doi.org/10.1002/chem.202001215