Back to Search Start Over

Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro.

Authors :
Ding, Bo
Lin, Chengheng
Liu, Qian
He, Yingying
Ruganzu, John Bosco
Jin, Hui
Peng, Xiaoqian
Ji, Shengfeng
Ma, Yanbing
Yang, Weina
Source :
Journal of Neuroinflammation; 10/14/2020, Vol. 17 Issue 1, p1-17, 17p
Publication Year :
2020

Abstract

<bold>Background: </bold>Glial activation and neuroinflammation play a crucial role in the pathogenesis and development of Alzheimer's disease (AD). The receptor for advanced glycation end products (RAGE)-mediated signaling pathway is related to amyloid beta (Aβ)-induced neuroinflammation. This study aimed to investigate the neuroprotective effects of tanshinone IIA (tan IIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza Bunge, against Aβ-induced neuroinflammation, cognitive impairment, and neurotoxicity as well as the underlying mechanisms in vivo and in vitro.<bold>Methods: </bold>Open-field test, Y-maze test, and Morris water maze test were conducted to assess the cognitive function in APP/PS1 mice. Immunohistochemistry, immunofluorescence, thioflavin S (Th-S) staining, enzyme-linked immunosorbent assay (ELISA), real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR), and western blotting were performed to explore Aβ deposition, synaptic and neuronal loss, microglial and astrocytic activation, RAGE-dependent signaling, and the production of pro-inflammatory cytokines in APP/PS1 mice and cultured BV2 and U87 cells.<bold>Results: </bold>Tan IIA treatment prevented spatial learning and memory deficits in APP/PS1 mice. Additionally, tan IIA attenuated Aβ accumulation, synapse-associated proteins (Syn and PSD-95) and neuronal loss, as well as peri-plaque microgliosis and astrocytosis in the cortex and hippocampus of APP/PS1 mice. Furthermore, tan IIA significantly suppressed RAGE/nuclear factor-κB (NF-κB) signaling pathway and the production of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) in APP/PS1 mice and cultured BV2 and U87 cells.<bold>Conclusions: </bold>Taken together, the present results indicated that tan IIA improves cognitive decline and neuroinflammation partly via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. Thus, tan IIA might be a promising therapeutic drug for halting and preventing AD progression. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17422094
Volume :
17
Issue :
1
Database :
Complementary Index
Journal :
Journal of Neuroinflammation
Publication Type :
Academic Journal
Accession number :
146431409
Full Text :
https://doi.org/10.1186/s12974-020-01981-4