Back to Search Start Over

Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics.

Authors :
Gavilán-Arriazu, E.M.
Mercer, M.P.
Pinto, O.A.
Oviedo, O.A.
Barraco, D.E.
Hoster, H.E.
Leiva, E.P.M.
Source :
Journal of Solid State Electrochemistry; Nov2020, Vol. 24 Issue 11/12, p3279-3287, 9p
Publication Year :
2020

Abstract

The voltammetric behavior of Li<superscript>+</superscript> intercalation/deintercalation in/from LiMn<subscript>2</subscript>O<subscript>4</subscript> thin films and single particles is simulated, supporting very recent experimental results. Experiments and calculations both show that particle size and geometry are crucial for the electrochemical response. A remarkable outcome of this research is that higher potential sweep rates, of the order of several millivolts per second, may be used to characterize nanoparticles by voltammetry sweeps, as compared with macroscopic systems. This is in line with previous conclusions drawn for related single particle systems using kinetic Monte Carlo simulations. The impact of electrode kinetics and finite space diffusion on the reversibility of the process and the finiteness of the diffusion in ion Li / LiMn<subscript>2</subscript>O<subscript>4</subscript> (de)intercalation is also discussed in terms of preexisting modeling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14328488
Volume :
24
Issue :
11/12
Database :
Complementary Index
Journal :
Journal of Solid State Electrochemistry
Publication Type :
Academic Journal
Accession number :
146479693
Full Text :
https://doi.org/10.1007/s10008-020-04717-9