Back to Search Start Over

Energy-Saving Electrospinning with a Concentric Teflon-Core Rod Spinneret to Create Medicated Nanofibers.

Authors :
Kang, Shixiong
Hou, Shicong
Chen, Xunwei
Yu, Deng-Guang
Wang, Lin
Li, Xiaoyan
R. Williams, Gareth
Source :
Polymers (20734360); Oct2020, Vol. 12 Issue 10, p2421-2421, 1p
Publication Year :
2020

Abstract

Although electrospun nanofibers are expanding their potential commercial applications in various fields, the issue of energy savings, which are important for cost reduction and technological feasibility, has received little attention to date. In this study, a concentric spinneret with a solid Teflon-core rod was developed to implement an energy-saving electrospinning process. Ketoprofen and polyvinylpyrrolidone (PVP) were used as a model of a poorly water-soluble drug and a filament-forming matrix, respectively, to obtain nanofibrous films via traditional tube-based electrospinning and the proposed solid rod-based electrospinning method. The functional performances of the films were compared through in vitro drug dissolution experiments and ex vivo sublingual drug permeation tests. Results demonstrated that both types of nanofibrous films do not significantly differ in terms of medical applications. However, the new process required only 53.9% of the energy consumed by the traditional method. This achievement was realized by the introduction of several engineering improvements based on applied surface modifications, such as a less energy dispersive air-epoxy resin surface of the spinneret, a free liquid guiding without backward capillary force of the Teflon-core rod, and a smaller fluid–Teflon adhesive force. Other non-conductive materials could be explored to develop new spinnerets offering good engineering control and energy savings to obtain low-cost electrospun polymeric nanofibers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
12
Issue :
10
Database :
Complementary Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
146668417
Full Text :
https://doi.org/10.3390/polym12102421