Back to Search Start Over

Electrocatalytic hydrogen production by dinuclear cobalt(II) compounds containing redox-active diamidate ligands: a combined experimental and theoretical study.

Authors :
Papanikolaou, Michael G.
Elliott, Alexander
McAllister, James
Gallos, John K.
Keramidas, Anastasios D.
Kabanos, Themistoklis A.
Sproules, Stephen
Miras, Haralampos N.
Source :
Dalton Transactions: An International Journal of Inorganic Chemistry; 11/28/2020, Vol. 49 Issue 44, p15718-15730, 13p
Publication Year :
2020

Abstract

The chiral dicobalt(II) complex [Co<superscript>II</superscript><subscript>2</subscript>(μ<subscript>2</subscript>-L)<subscript>2</subscript>] (1) (H<subscript>2</subscript>L = N<superscript>2</superscript>,N<superscript>6</superscript>-di(quinolin-8-yl)pyridine-2,6-dicarboxamide) and its tert-butyl analogue [Co<superscript>II</superscript><subscript>2</subscript>(μ<subscript>2</subscript>-L<superscript>Bu</superscript>)<subscript>2</subscript>] (2) were synthesized and structurally characterized. Addition of one equivalent of AgSbF<subscript>6</subscript> to the dichloromethane solution of 1 and 2 resulted in the isolation of the mixed-valent dicobalt(III , II) species [Co<superscript>III</superscript>Co<superscript>II</superscript>(μ<subscript>2</subscript>-L)<subscript>2</subscript>]SbF<subscript>6</subscript> (3) and [Co<superscript>III</superscript>Co<superscript>II</superscript>(μ<subscript>2</subscript>-L<superscript>Bu</superscript>)<subscript>2</subscript>]SbF<subscript>6</subscript> (4). Homovalent 1 and 2 exhibited catalytic activity towards proton reduction in the presence of acetic acid (AcOH) as the substrate. The complexes are stable in solution while their catalytic turnover frequency is estimated at 10 and 34.6 h<superscript>−1</superscript> mol<subscript>cat</subscript><superscript>−1</superscript> for 1 and 2, respectively. Calculations reveal one-electron reduction of 1 is ligand-based, preserving the dicobalt(II) core and activating the ligand toward protonation at the quinoline group. This creates a vacant coordination site that is subsequently protonated to generate the catalytically ubiquitous Co(III) hydride. The dinuclear structure persists throughout where the distal Co(II) ion modulates the reactivity of the adjacent metal site by promoting ligand redox activity through spin state switching. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14779226
Volume :
49
Issue :
44
Database :
Complementary Index
Journal :
Dalton Transactions: An International Journal of Inorganic Chemistry
Publication Type :
Academic Journal
Accession number :
147039982
Full Text :
https://doi.org/10.1039/d0dt02617d