Back to Search Start Over

Thermometry and up-conversion luminescence of Ln3+ (Ln = Er, Ho, Tm)-doped double molybdate LiYbMo2O8.

Authors :
Yun, Xiangyan
Zhou, Jun
Zhu, Yaohui
Molokeev, Maxim S.
Jia, Yetong
Wei, Chao
Xu, Denghui
Sun, Jiayue
Source :
Journal of Materials Science: Materials in Electronics; 2020, Vol. 31 Issue 21, p18370-18380, 11p
Publication Year :
2020

Abstract

The discovery of stable and highly sensitive up-conversion (UC) phosphors using the fluorescence intensity ratio (FIR) is a significant challenge in the field of optical temperature sensor. Er<superscript>3+</superscript>/Ho<superscript>3+</superscript>/Tm<superscript>3+</superscript>-doped LiYbMo<subscript>2</subscript>O<subscript>8</subscript> UC phosphors with excellent luminescence properties were successfully synthesized through a high-temperature solid-state reaction, and the crystal structure and UC luminescence properties were discussed in detail. The UC process has been investigated by spectra pump power dependence and further explained via the energy level diagram. All emission processes about Er<superscript>3+</superscript> ions and Ho<superscript>3+</superscript> ions are two-photon processes and the blue emission process about Tm<superscript>3+</superscript> ions is a combination of two-photon process and three-photon process. Thermal sensing performances depended on FIR technology were estimated and the sensitivities of LiYb<subscript>1−x</subscript>Mo2O8:xLn<superscript>3+</superscript> included absolute sensitivity (S<subscript>a</subscript>) and relative sensitivity (S<subscript>r</subscript>) can produce particular change rules with the temperature, which can serve as excellent candidates for applications in optical temperature sensing. With the increase of temperature, the maximum values of S<subscript>r</subscript> of LiYb<subscript>1−x</subscript>Mo<subscript>2</subscript>O<subscript>8</subscript>:xLn<superscript>3+</superscript> are 1.16% K<superscript>−1</superscript> (0.05Er<superscript>3+</superscript>), 0.25% K<superscript>−1</superscript> (0.01Ho<superscript>3+</superscript>), and 0.51% K<superscript>−1</superscript> (0.01Tm<superscript>3+</superscript>), respectively. In addition, the S<subscript>a</subscript> value of LiYb<subscript>0.95</subscript>Mo<subscript>2</subscript>O<subscript>8</subscript>:0.05Er<superscript>3+</superscript> phosphor will reach the maximum (1.08% K<superscript>−1</superscript>) at 475 K, while the maximum values of S<subscript>a</subscript> of LiYb<subscript>0.99</subscript>Mo<subscript>2</subscript>O<subscript>8</subscript>:0.01Ho<superscript>3+</superscript> and LiYb<subscript>0.99</subscript>Mo<subscript>2</subscript>O<subscript>8</subscript>:0.01Tm<superscript>3+</superscript> are 0.16% K<superscript>−1</superscript>, 0.14% K<superscript>−1</superscript>. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09574522
Volume :
31
Issue :
21
Database :
Complementary Index
Journal :
Journal of Materials Science: Materials in Electronics
Publication Type :
Academic Journal
Accession number :
147299372
Full Text :
https://doi.org/10.1007/s10854-020-04382-8