Back to Search Start Over

Effect of Submicron SiC Particles on the Properties of Alcocrfeni High Entropy Alloy Coatings.

Authors :
Chen, Ke
Wang, Tongyue
Wang, Xianfa
Jiang, Ye
Xue, Jianxun
Liu, Xiao
Jiang, Yan
Chen, Zhipeng
Source :
Powder Metallurgy & Metal Ceramics; Nov2020, Vol. 59 Issue 7/8, p424-433, 10p
Publication Year :
2020

Abstract

The high entropy alloy (HEA) coatings are potential candidates for advanced application in the protection of steel and other traditional alloys due to their excellent physical and mechanical performance. The AlCoCrFeNi alloy series were favorably studied due to comparably low cost and stable performance. In this research, the AlCoCrFeNi coatings were prepared through surface mechanical abrasion treatment (SMAT). The process implied the comprehensive effect of cold welding and friction. The submicron-size SiC particles were added into the raw materials in different amounts. For SMAT, a high-energy ball milling method was adopted to promote the alloying of metals, disperse SiC<subscript>p</subscript>, and combine the powder to the carbon steel substrate. Afterward, the phase composition, microstructure of coatings, and distribution of reinforcement were detected through XRD and SEM analysis, separately, and the effect of SiC particles content on the properties of the coatings was analyzed. The results show that the addition of submicron-sized SiC significantly improved the density and stiffness of the HEA coating and diminished defects and surface roughness. Сoatings containing SiC display enhanced adhesion force and wear resistance. The proposed mechanism is that the submicron SiC particles promoted mechanical alloying of pure metal and intensified the adherence and cold welding of the coating. Especially, herein, the addition of 15 wt.% SiC granted the best comprehensive properties of the coating. Excessive SiC content led to the deterioration of coating plasticity and the growth of cracks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10681302
Volume :
59
Issue :
7/8
Database :
Complementary Index
Journal :
Powder Metallurgy & Metal Ceramics
Publication Type :
Academic Journal
Accession number :
147314749
Full Text :
https://doi.org/10.1007/s11106-020-00176-z