Back to Search
Start Over
Estrogen-sensitive medial preoptic area neurons coordinate torpor in mice.
- Source :
- Nature Communications; 12/11/2020, Vol. 11 Issue 1, p1-14, 14p
- Publication Year :
- 2020
-
Abstract
- Homeotherms maintain a stable internal body temperature despite changing environments. During energy deficiency, some species can cease to defend their body temperature and enter a hypothermic and hypometabolic state known as torpor. Recent advances have revealed the medial preoptic area (MPA) as a key site for the regulation of torpor in mice. The MPA is estrogen-sensitive and estrogens also have potent effects on both temperature and metabolism. Here, we demonstrate that estrogen-sensitive neurons in the MPA can coordinate hypothermia and hypometabolism in mice. Selectively activating estrogen-sensitive MPA neurons was sufficient to drive a coordinated depression of metabolic rate and body temperature similar to torpor, as measured by body temperature, physical activity, indirect calorimetry, heart rate, and brain activity. Inducing torpor with a prolonged fast revealed larger and more variable calcium transients from estrogen-sensitive MPA neurons during bouts of hypothermia. Finally, whereas selective ablation of estrogen-sensitive MPA neurons demonstrated that these neurons are required for the full expression of fasting-induced torpor in both female and male mice, their effects on thermoregulation and torpor bout initiation exhibit differences across sex. Together, these findings suggest a role for estrogen-sensitive MPA neurons in directing the thermoregulatory and metabolic responses to energy deficiency. Torpor is a state of reduced metabolism and body temperature that conserves energy when food is scarce. Here the authors show that estrogen-sensitive neurons in the hypothalamus regulate torpor in mice, maintaining torpor in both sexes but initiating torpor and regulating core temperature differentially across sex. [ABSTRACT FROM AUTHOR]
- Subjects :
- PREOPTIC area
NEURONS
BODY temperature
MICE
HEART beat
PHYSICAL activity
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 11
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 147545245
- Full Text :
- https://doi.org/10.1038/s41467-020-20050-1