Back to Search Start Over

An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer.

Authors :
Sahin, Dilara
Arenas-Ramirez, Natalia
Rath, Matthias
Karakus, Ufuk
Hümbelin, Monika
van Gogh, Merel
Borsig, Lubor
Boyman, Onur
Source :
Nature Communications; 12/22/2020, Vol. 11 Issue 1, p1-12, 12p
Publication Year :
2020

Abstract

Modified interleukin-2 (IL-2) formulations are being tested in cancer patients. However, IL-2 immunotherapy damages IL-2 receptor (IL-2R)-positive endothelial cells and stimulates IL-2Rα (CD25)-expressing lymphocytes that curtail anti-tumor responses. A first generation of IL-2Rβ (CD122)-biased IL-2s addressed some of these drawbacks. Here, we present a second-generation CD122-biased IL-2, developed by splitting and permanently grafting unmutated human IL-2 (hIL-2) to its antigen-binding groove on the anti-hIL-2 monoclonal antibody NARA1, thereby generating NARA1leukin. In comparison to hIL-2/NARA1 complexes, NARA1leukin shows a longer in vivo half-life, completely avoids association with CD25, and more potently stimulates CD8<superscript>+</superscript> T and natural killer cells. These effects result in strong anti-tumor responses in various pre-clinical cancer models, whereby NARA1leukin consistently surpasses the efficacy of hIL-2/NARA1 complexes in controlling metastatic disease. Collectively, NARA1leukin is a CD122-biased single-molecule construct based on unmutated hIL-2 with potent efficacy against advanced malignancies. IL-2/anti-IL-2 complexes have been proposed to curtail the severe adverse effects associated with IL-2 immunotherapy. Here, the authors, by integrating unmutated human IL-2 in the antigen binding groove of an anti-IL-2 monoclonal antibody, generate a CD122-biased fusion protein that prevents binding of IL-2 to CD25 and promotes anti-tumor immune response in several preclinical metastatic cancer models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
147734197
Full Text :
https://doi.org/10.1038/s41467-020-20220-1