Back to Search Start Over

Non-vanishing of Maass form L-functions at the central point.

Authors :
Balkanova, Olga
Huang, Bingrong
Södergren, Anders
Source :
Proceedings of the American Mathematical Society; 2/1/2021, Vol. 149 Issue 2, p509-523, 15p
Publication Year :
2021

Abstract

In this paper, we consider the family {L<subscript>j</subscript>(s)}<subscript>j=1</subscript><superscript>∞</superscript> of L-functions associated to an orthonormal basis {u<subscript>j</subscript>}<subscript>j=1</subscript><superscript>∞</superscript> of even Hecke-Maass forms for the modular group SL(2,Z) with eigenvalues {λ<subscript>j</subscript> = κ<subscript>j</subscript><superscript>2</superscript> + 1/4}<subscript>j=1</subscript><superscript>∞</superscript>. We prove the following effective non-vanishing result: At least 50 % of the central values L<subscript>j</subscript>(1/2) with κ<subscript>j</subscript> ≤ T do not vanish as T → ∞. Furthermore, we establish effective non-vanishing results in short intervals. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029939
Volume :
149
Issue :
2
Database :
Complementary Index
Journal :
Proceedings of the American Mathematical Society
Publication Type :
Academic Journal
Accession number :
148035865
Full Text :
https://doi.org/10.1090/proc/15208