Back to Search Start Over

Adhesion-mediated heterogeneous actin organization governs apoptotic cell extrusion.

Authors :
Le, Anh Phuong
Rupprecht, Jean-François
Mège, René-Marc
Toyama, Yusuke
Lim, Chwee Teck
Ladoux, Benoît
Source :
Nature Communications; 1/15/2021, Vol. 12 Issue 1, p1-18, 18p
Publication Year :
2021

Abstract

Apoptotic extrusion is crucial in maintaining epithelial homeostasis. Current literature supports that epithelia respond to extrusion by forming a supracellular actomyosin purse-string in the neighbors. However, whether other actin structures could contribute to extrusion and how forces generated by these structures can be integrated are unknown. Here, we found that during extrusion, a heterogeneous actin network composed of lamellipodia protrusions and discontinuous actomyosin cables, was reorganized in the neighboring cells. The early presence of basal lamellipodia protrusion participated in both basal sealing of the extrusion site and orienting the actomyosin purse-string. The co-existence of these two mechanisms is determined by the interplay between the cell-cell and cell-substrate adhesions. A theoretical model integrates these cellular mechanosensitive components to explain why a dual-mode mechanism, which combines lamellipodia protrusion and purse-string contractility, leads to more efficient extrusion than a single-mode mechanism. In this work, we provide mechanistic insight into extrusion, an essential epithelial homeostasis process. Cell extrusion regulates monolayer cell density and is critical in maintaining epithelia integrity, which has implications in homeostasis, development, and cancer progression. Here the authors describe how monolayer integrate mechanical signals from tissue mechanics, cell-cell adhesion, cell-substrate adhesion and cytoskeleton coordinate cell extrusion. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
148114731
Full Text :
https://doi.org/10.1038/s41467-020-20563-9