Back to Search Start Over

A porous self-healing hydrogel with an island-bridge structure for strain and pressure sensors.

Authors :
Zhang, Yue
Ren, Erhui
Li, Ang
Cui, Ce
Guo, Ronghui
Tang, Hong
Xiao, Hongyan
Zhou, Mi
Qin, Wenfeng
Wang, Xinyuan
Liu, Li
Source :
Journal of Materials Chemistry B; 1/21/2021, Vol. 9 Issue 3, p719-730, 12p
Publication Year :
2021

Abstract

Conductive hydrogels have attracted widespread attention in wearable electronic devices and human motion detection. However, designing self-healing hydrogels with high conductivity and excellent mechanical properties remains a challenge. In this work, polyvinyl alcohol/carbon nanotubes/graphene (PVA/CNTs/graphene) with an island-bridge hydrogel structure and self-healing properties was designed by merging PVA/CNTs hydrogel and PVA/graphene hydrogel, in which the PVA/graphene hydrogel acts as an "island" and PVA/CNTs hydrogel acts as a "bridge" to bridge the entire conductive network. Hydrogen-bonding between the borate ion and the –OH group of PVA allows the conductive hydrogel to heal without any external stimulation. The PVA/CNTs/graphene hydrogel can be used for both stretchable strain and pressure sensors. The obtained PVA/CNTs/graphene composite hydrogel exhibits excellent electrical conductivity, extreme high elastic strain (up to 900%) and strong mechanical pressure (up to 10 kPa). The strain sensor based on the PVA/CNTs/graphene hydrogel exhibits excellent tensile strain sensitivity (a gauge factor of 152.6 in the strain region of 316–600%) and wide detection working range (1–600%) with high durability and repeatability. The sensor also remains highly sensitive when being used as a pressure sensor (−0.127 kPa<superscript>−1</superscript> at 0–5 kPa). Additionally, the PVA/CNTs/graphene hydrogel-based sensor can detect human motions after multiple cuts and self-healing with excellent stability and repeatability. The PVA/CNTs/graphene hydrogel provides a new idea in the development of wearable electronics, demonstrating the potential of the next generation of wearable electronics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
2050750X
Volume :
9
Issue :
3
Database :
Complementary Index
Journal :
Journal of Materials Chemistry B
Publication Type :
Academic Journal
Accession number :
148381414
Full Text :
https://doi.org/10.1039/d0tb01926g