Back to Search Start Over

DNA barcoding of Oryza: conventional, specific, and super barcodes.

Authors :
Zhang, Wen
Sun, Yuzhe
Liu, Jia
Xu, Chao
Zou, Xinhui
Chen, Xun
Liu, Yanlei
Wu, Ping
Yang, Xueying
Zhou, Shiliang
Source :
Plant Molecular Biology; 2021, Vol. 105 Issue 3, p215-228, 14p
Publication Year :
2021

Abstract

Key message: We applied the phylogenomics to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity. Rice (genus Oryza) is one of the most important crops in the world, supporting half of the world's population. Breeding of high-yielding and quality cultivars relies on genetic resources from both cultivated and wild species, which are collected and maintained in seed banks. Unfortunately, numerous seeds are mislabeled due to taxonomic issues or misidentifications. Here, we applied the phylogenomics of 58 complete chloroplast genomes and two hypervariable nuclear genes to determine species identity in rice seeds. Twenty-one Oryza species were identified. Conspecific relationships were determined between O. glaberrima and O. barthii, O. glumipatula and O. longistaminata, O. grandiglumis and O. alta, O. meyeriana and O. granulata, O. minuta and O. malampuzhaensis, O. nivara and O. sativa subsp. indica, and O. sativa subsp. japonica and O. rufipogon.D and L genome types were not found and the H genome type was extinct. Importantly, we evaluated the performance of four conventional plant DNA barcodes (matK, rbcL, psbA-trnH, and ITS), six rice-specific chloroplast DNA barcodes (psaJ-rpl33, trnC-rpoB, rps16-trnQ, rpl22-rps19, trnK-matK, and ndhC-trnV), two rice-specific nuclear DNA barcodes (NP78 and R22), and a chloroplast genome super DNA barcode. The latter was the most reliable marker. The six rice-specific chloroplast barcodes revealed that 17% of the 53 seed accessions from rice seed banks or field collections were mislabeled. These results are expected to clarify the concept of rice species, aid in the identification and use of rice germplasms, and support rice biodiversity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01674412
Volume :
105
Issue :
3
Database :
Complementary Index
Journal :
Plant Molecular Biology
Publication Type :
Academic Journal
Accession number :
148469901
Full Text :
https://doi.org/10.1007/s11103-020-01054-3