Back to Search Start Over

Lighting up solid states using a rubber.

Authors :
Li, Zhongyu
Wang, Yanjie
Baryshnikov, Gleb
Shen, Shen
Zhang, Man
Zou, Qi
Ågren, Hans
Zhu, Liangliang
Source :
Nature Communications; 2/10/2021, Vol. 12 Issue 1, p1-8, 8p
Publication Year :
2021

Abstract

It is crucial and desirable to develop green and high-efficient strategies to regulate solid-state structures and their related material properties. However, relative to solution, it is more difficult to break and generate chemical bonds in solid states. In this work, a rubbing-induced photoluminescence on the solid states of ortho-pyridinil phenol family was achieved. This rubbing response relied on an accurately designed topochemical tautomerism, where a negative charge, exactly provided by the triboelectric effect of a rubber, can induce a proton transfer in a double H-bonded dimeric structure. This process instantaneously led to a bright-form tautomer that can be stabilized in the solid-state settings, leading to an up to over 450-fold increase of the fluorescent quantum yield of the materials. The property can be repeatedly used due to the reversibility of the tautomerism, enabling encrypted applications. Moreover, a further modification to the structure can be accomplished to achieve different properties, opening up more possibilities for the design of new-generation smart materials. Changes in molecular properties due to stimuli response are critically important for the development of new materials. However, most processes are slow or inefficient in the solid state. Here the authors demonstrate property switching in the solid state using a rubbing-induced tautomerism in multiple hydrogen-bonded donor-acceptor couples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
148629175
Full Text :
https://doi.org/10.1038/s41467-021-21253-w