Back to Search Start Over

A numerical study of a first order modular grad-div stabilization for the magnetohydrodynamics equations.

Authors :
Akbas, Mine
Cakalli, Huseyin
Kocinac, Ljubisa D. R.
Ashyralyev, Allaberen
Harte, Robin
Dik, Mehmet
Canak, Ibrahim
Kandemir, Hacer Sengul
Tez, Mujgan
Gurtug, Ozay
Savas, Ekrem
Akay, Kadri Ulas
Ucgun, Filiz Cagatay
Uyaver, Sahin
Ashyralyyev, Charyyar
Sezer, Sefa Anil
Turkoglu, Arap Duran
Onvural, Oruc Raif
Sahin, Hakan
Source :
AIP Conference Proceedings; 2020, Vol. 2334 Issue 1, p1-4, 4p
Publication Year :
2020

Abstract

This paper proposes a stabilization method to approximate analytical solutions of magnetohydrodynamics (MHD) equations. The method adds two modular grad-div steps into fully-discrete finite element MHD solver. The main idea in these intrusive steps is to penalize the divergence of the velocity/magnetic fields both in L<superscript>2</superscript> and H<superscript>1</superscript>-norms. The paper confirms the optimal convergence of the method, and gives numerical experiments which reveal positive effect of the method as in the usual grad-div stabilization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0094243X
Volume :
2334
Issue :
1
Database :
Complementary Index
Journal :
AIP Conference Proceedings
Publication Type :
Conference
Accession number :
149021817
Full Text :
https://doi.org/10.1063/5.0042578