Back to Search Start Over

Stabilization of Delayed Fuzzy Neutral-type Systems Under Intermittent Control.

Authors :
Vadivel, R.
Saravanan, S.
Unyong, B.
Hammachukiattikul, P.
Hong, Keum-Shik
Lee, Gyu M.
Source :
International Journal of Control, Automation & Systems; Mar2021, Vol. 19 Issue 3, p1408-1425, 18p
Publication Year :
2021

Abstract

This study is concerned about the stabilization for delayed fuzzy neutral-type system (DFNTS) with uncertain parameters under intermittent control. Firstly, by constructing the augmented Lyapunov-Krasovskii functional (LKF) about different time delays along with single and double auxillary function-based integral inequalities (SAFBII, and DAFBII, respectively), a new class of delay-dependent adequate conditions are proposed, so that the robust fuzzy neutral-type system under consideration is guaranteed to be globally asymptotically stable (GAS). Secondly, the intermittent control (IC) is introduced to stabilize the system with mixed time-varying delays. In the view of inferred adequate conditions, the IC parameters are determined as for the arrangement of linear matrix inequalities (LMIs). It is noted that the strategies exploited in this work are apart from the other methods engaged in the literature, and the proposed conditions are less conservative. Finally, numerical examples are given to demonstrate the effectiveness of the developed techniques in this work. One of the practical applications is single-link robot arm (SLRA) model to show the viability and benefits of the structured intermittent control. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15986446
Volume :
19
Issue :
3
Database :
Complementary Index
Journal :
International Journal of Control, Automation & Systems
Publication Type :
Academic Journal
Accession number :
149025049
Full Text :
https://doi.org/10.1007/s12555-020-0526-2