Back to Search Start Over

Role of the Hippo‐YAP/NF‐κB signaling pathway crosstalk in regulating biological behaviors of macrophages under titanium ion exposure.

Authors :
Tang, Kai‐ming
Chen, Wei
Tang, Ze‐hua
Yu, Xiao‐yu
Zhu, Wen‐qing
Zhang, Song‐mei
Qiu, Jing
Source :
Journal of Applied Toxicology; Apr2021, Vol. 41 Issue 4, p561-571, 11p
Publication Year :
2021

Abstract

The presence of metal ions, such as titanium (Ti) ions, is toxic to adjacent tissues of implants. Indeed, Ti ions may induce an inflammatory response through the NF‐κB pathway, thus causing damage to soft and hard tissues. The involvement of Yes‐associated protein (YAP), a key factor of the Hippo pathway, in an immuno‐inflammatory response has been confirmed, whereas its role in Ti ion‐mediated inflammation has not been elucidated. Therefore, this study aimed to investigate the role of signal crosstalk between the Hippo/YAP and NF‐κB signaling pathways in the pro‐inflammatory effect of Ti ions on macrophages. In our work, RAW264.7 cells were cocultured with Ti ions. The migration capacity of macrophages under Ti ion exposure was measured by transwell assay. Western blot analysis was used to detect the expressions of related proteins. Polymerase chain reaction was used to evaluate the expression of pro‐inflammatory cytokines. The nucleus translocation of YAP and P65 was visualized and analyzed via immunofluorescence staining. The results showed that the migration of macrophages was promoted under Ti ion exposure. Ten parts per million Ti ions induced nuclear expression of YAP and activated the NF‐κB pathway, which finally upregulated the expression of pro‐inflammatory cytokines in macrophages. Moreover, the inhibition of the NF‐κB pathway rescued the reduction of YAP expression under Ti ion exposure. Most importantly, the overexpression of YAP exacerbated the inflammatory response mediated by Ti ions through the NF‐κB pathway. In summary, this study explored the mechanism of Hippo‐YAP/NF‐κB pathway crosstalk involved in the regulation of macrophage behaviors under Ti ion exposure. Titanium (Ti) ions are toxic to adjacent tissues of implants, but the underlying mechanism has not been elucidated. This study found that Ti ions promoted the migration of macrophages and activated macrophages to release pro‐inflammatory cytokines. During this process, the Hippo‐YAP and NF‐κB pathways were activated in macrophages. Further studies showed that the Hippo‐YAP and NF‐κB signaling pathways crosstalk was involved in the regulation of macrophage behavior under Ti ion exposure. The present study provided a molecular mechanism for Ti ion‐induced inflammation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0260437X
Volume :
41
Issue :
4
Database :
Complementary Index
Journal :
Journal of Applied Toxicology
Publication Type :
Academic Journal
Accession number :
149148043
Full Text :
https://doi.org/10.1002/jat.4065