Back to Search Start Over

Ruthenium Core–Shell Engineering with Nickel Single Atoms for Selective Oxygen Evolution via Nondestructive Mechanism.

Authors :
Harzandi, Ahmad M.
Shadman, Sahar
Nissimagoudar, Arun S.
Kim, Dong Yeon
Lim, Hee‐Dae
Lee, Jong Hoon
Kim, Min Gyu
Jeong, Hu Young
Kim, Youngsik
Kim, Kwang S.
Source :
Advanced Energy Materials; 3/11/2021, Vol. 11 Issue 10, p1-12, 12p
Publication Year :
2021

Abstract

To develop effective electrocatalytic splitting of acidic water, which is a key reaction for renewable energy conversion, the fundamental understanding of sluggish/destructive mechanism of the oxygen evolution reaction (OER) is essential. Through investigating atom/proton/electron transfers in the OER, the distinctive acid–base (AB) and direct‐coupling (DC) lattice oxygen mechanisms (LOMs) and adsorbates evolution mechanism (AEM) are elucidated, depending on the surface‐defect engineering condition. The designed catalysts are composed of a compressed metallic Ru‐core and oxidized Ru‐shell with Ni single atoms (SAs). The catalyst synthesized with hot acid treatment selectively follows AB‐LOM, exhibiting simultaneously enhanced activity and stability. It produces a current density of 10/100 mA cm−2 at a low overpotential of 184/229 mV and sustains water oxidation at a high current density of up to 20 mA cm−2 over ≈200 h in strongly acidic media. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
11
Issue :
10
Database :
Complementary Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
149219261
Full Text :
https://doi.org/10.1002/aenm.202003448