Back to Search Start Over

Hybrid Reference Current Generation Theory for Solar Fed UPFC System.

Authors :
Senthil Kumar, R.
Mohana Sundaram, K.
Tamilselvan, K. S.
Abu-Siada, Ahmed
Source :
Energies (19961073); 3/15/2021, Vol. 14 Issue 6, p1527-1527, 1p
Publication Year :
2021

Abstract

The extensive usage of power electronic components creates harmonics in the voltage and current, because of which, the quality of delivered power gets affected. Therefore, it is essential to improve the quality of power, as we reveal in this paper. The problems of load voltage, source current, and power factors are mitigated by utilizing the unified power flow controller (UPFC), in which a combination of series and shunt converters are combined through a DC-link capacitor. To retain the link voltage and to maximize the delivered power, a PV module is introduced with a high gain converter, named the switched clamped diode boost (SCDB) converter, in which the grey wolf optimization (GWO) algorithm is instigated for tracking the maximum power. To retain the link-voltage of the capacitor, the artificial neural network (ANN) is implemented. A proper control of UPFC is highly essential, which is achieved by the reference current generation with the aid of a hybrid algorithm. A genetic algorithm, hybridized with the radial basis function neural network (RBFNN), is utilized for the generation of a switching sequence, and the generated pulse has been given to both the series and shunt converters through the PWM generator. Thus, the source current and load voltage harmonics are mitigated with reactive power compensation, which results in attaining a unity power factor. The projected methodology is simulated by MATLAB and it is perceived that the total harmonic distortion (THD) of 0.84% is attained, with almost a unity power factor, and this is validated with FPGA Spartan 6E hardware. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
14
Issue :
6
Database :
Complementary Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
149610862
Full Text :
https://doi.org/10.3390/en14061527