Back to Search Start Over

A Novel Recursive Model Based on a Convolutional Long Short-Term Memory Neural Network for Air Pollution Prediction.

Authors :
Wang, Weilin
Mao, Wenjing
Tong, Xueli
Xu, Gang
Bação, Fernando
Source :
Remote Sensing; Apr2021, Vol. 13 Issue 7, p1284, 1p
Publication Year :
2021

Abstract

Deep learning provides a promising approach for air pollution prediction. The existing deep learning-based predicted models generally consider either the temporal correlations of air quality monitoring stations or the nonlinear relationship between the PM<subscript>2.5</subscript> (particulate matter with an aerodynamic diameter of less than 2.5 μm) concentrations and explanatory variables. Spatial correlation has not been effectively incorporated into prediction models, therefore exhibiting poor performance in PM<subscript>2.5</subscript> prediction tasks. Additionally, determining the manner by which to expand longer-term prediction tasks is still challenging. In this paper, to allow for spatiotemporal correlations, a spatiotemporal convolutional recursive long short-term memory (CR-LSTM) neural network model is proposed for predicting the PM<subscript>2.5</subscript> concentrations in long-term prediction tasks by combining a convolutional long short-term memory (ConvLSTM) neural network and a recursive strategy. Herein, the ConvLSTM network was used to capture the complex spatiotemporal correlations and to predict the future PM<subscript>2.5</subscript> concentrations; the recursive strategy was used for expanding the long-term prediction tasks. The CR-LSTM model was used to realize the prediction of the future 24 h of PM<subscript>2.5</subscript> concentrations for 12 air quality monitoring stations in Beijing by configuring both the appropriate time lag derived from the temporal correlations and the spatial neighborhood, including the hourly historical PM<subscript>2.5</subscript> concentrations, the daily mean meteorological data, and the annual nighttime light and normalized difference vegetation index (NDVI). The results showed that the proposed CR-LSTM model achieved better performance (coefficient of determination (R<superscript>2</superscript>) = 0.74; root mean square error (RMSE) = 18.96 μg/m<superscript>3</superscript>) than other common models, such as multiple linear regression (MLR), support vector regression (SVR), the conventional LSTM model, the LSTM extended (LSTME) model, and the temporal sliding LSTM extended (TS-LSTME) model. The proposed CR-LSTM model, implementing a combination of geographical rules, recursive strategy, and deep learning, shows improved performance in longer-term prediction tasks. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
13
Issue :
7
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
149715260
Full Text :
https://doi.org/10.3390/rs13071284