Back to Search Start Over

On the splitting method for the nonlinear Schrödinger equation with initial data in H1.

Authors :
Choi, Woocheol
Koh, Youngwoo
Source :
Discrete & Continuous Dynamical Systems: Series A; Aug2021, Vol. 41 Issue 8, p3837-3867, 31p
Publication Year :
2021

Abstract

In this paper, we establish a convergence result for the operator splitting scheme Z<subscript>τ</subscript> introduced by Ignat [12], with initial data in H<superscript>1</superscript>, for the nonlinear Schrödinger equation: ∂<subscript>t</subscript>u = iΔu + iλ|u|<superscript>P</superscript>u, u(x,0) = φ(x), where p > 0, λ ∈ {−1,1}, and (x,t) ∈ R<superscript>d</superscript> × [0, ∞). We prove the L<superscript>2</superscript> convergence of order O(τ<superscript>1/2</superscript>) for the scheme with initial data in the space H<superscript>1</superscript>(R<superscript>d</superscript>) for the energy-subcritical range of p. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10780947
Volume :
41
Issue :
8
Database :
Complementary Index
Journal :
Discrete & Continuous Dynamical Systems: Series A
Publication Type :
Academic Journal
Accession number :
149756215
Full Text :
https://doi.org/10.3934/dcds.2021019