Back to Search
Start Over
On the splitting method for the nonlinear Schrödinger equation with initial data in H1.
- Source :
- Discrete & Continuous Dynamical Systems: Series A; Aug2021, Vol. 41 Issue 8, p3837-3867, 31p
- Publication Year :
- 2021
-
Abstract
- In this paper, we establish a convergence result for the operator splitting scheme Z<subscript>τ</subscript> introduced by Ignat [12], with initial data in H<superscript>1</superscript>, for the nonlinear Schrödinger equation: ∂<subscript>t</subscript>u = iΔu + iλ|u|<superscript>P</superscript>u, u(x,0) = φ(x), where p > 0, λ ∈ {−1,1}, and (x,t) ∈ R<superscript>d</superscript> × [0, ∞). We prove the L<superscript>2</superscript> convergence of order O(τ<superscript>1/2</superscript>) for the scheme with initial data in the space H<superscript>1</superscript>(R<superscript>d</superscript>) for the energy-subcritical range of p. [ABSTRACT FROM AUTHOR]
- Subjects :
- NONLINEAR Schrodinger equation
SCHRODINGER equation
Subjects
Details
- Language :
- English
- ISSN :
- 10780947
- Volume :
- 41
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Discrete & Continuous Dynamical Systems: Series A
- Publication Type :
- Academic Journal
- Accession number :
- 149756215
- Full Text :
- https://doi.org/10.3934/dcds.2021019