Back to Search Start Over

Reverse Scan Conversion and Efficient Deep Learning Network Architecture for Ultrasound Imaging on a Mobile Device.

Authors :
Lee, Kunkyu
Kim, Min
Lim, Changhyun
Song, Tai-Kyong
Merla, Arcangelo
Source :
Sensors (14248220); 4/15/2021, Vol. 21 Issue 8, p2629, 1p
Publication Year :
2021

Abstract

Point-of-care ultrasound (POCUS), realized by recent developments in portable ultrasound imaging systems for prompt diagnosis and treatment, has become a major tool in accidents or emergencies. Concomitantly, the number of untrained/unskilled staff not familiar with the operation of the ultrasound system for diagnosis is increasing. By providing an imaging guide to assist clinical decisions and support diagnosis, the risk brought by inexperienced users can be managed. Recently, deep learning has been employed to guide users in ultrasound scanning and diagnosis. However, in a cloud-based ultrasonic artificial intelligence system, the use of POCUS is limited due to information security, network integrity, and significant energy consumption. To address this, we propose (1) a structure that simultaneously provides ultrasound imaging and a mobile device-based ultrasound image guide using deep learning, and (2) a reverse scan conversion (RSC) method for building an ultrasound training dataset to increase the accuracy of the deep learning model. Experimental results show that the proposed structure can achieve ultrasound imaging and deep learning simultaneously at a maximum rate of 42.9 frames per second, and that the RSC method improves the image classification accuracy by more than 3%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
21
Issue :
8
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
150435545
Full Text :
https://doi.org/10.3390/s21082629