Sorry, I don't understand your search. ×
Back to Search Start Over

ZIKV Disrupts Placental Ultrastructure and Drug Transporter Expression in Mice.

Authors :
Andrade, Cherley Borba Vieira
Monteiro, Victoria Regina de Siqueira
Coelho, Sharton Vinicius Antunes
Gomes, Hanailly Ribeiro
Sousa, Ronny Paiva Campos
Nascimento, Veronica Muller de Oliveira
Bloise, Flavia Fonseca
Matthews, Stephen Giles
Bloise, Enrrico
Arruda, Luciana Barros
Ortiga-Carvalho, Tania Maria
Source :
Frontiers in Immunology; 5/21/2021, Vol. 12, p1-19, 19p
Publication Year :
2021

Abstract

Congenital Zika virus (ZIKV) infection can induce fetal brain abnormalities. Here, we investigated whether maternal ZIKV infection affects placental physiology and metabolic transport potential and impacts the fetal outcome, regardless of viral presence in the fetus at term. Low (10<superscript>3</superscript> PFU-ZIKV<subscript>PE243</subscript>; low ZIKV) and high (5x10<superscript>7</superscript> PFU-ZIKV<subscript>PE243</subscript>; high ZIKV) virus titers were injected into immunocompetent (ICompetent C57BL/6) and immunocompromised (ICompromised A129) mice at gestational day (GD) 12.5 for tissue collection at GD18.5 (term). High ZIKV elicited fetal death rates of 66% and 100%, whereas low ZIKV induced fetal death rates of 0% and 60% in C57BL/6 and A129 dams, respectively. All surviving fetuses exhibited intrauterine growth restriction (IUGR) and decreased placental efficiency. High-ZIKV infection in C57BL/6 and A129 mice resulted in virus detection in maternal spleens and placenta, but only A129 fetuses presented virus RNA in the brain. Nevertheless, pregnancies in both strains produced fetuses with decreased head sizes (p<0.05). Low-ZIKV-A129 dams had higher IL-6 and CXCL1 levels (p<0.05), and their placentas showed increased CCL-2 and CXCL-1 contents (p<0.05). In contrast, low-ZIKV-C57BL/6 dams had an elevated CCL2 serum level and increased type I and II IFN expression in the placenta. Notably, less abundant microvilli and mitochondrial degeneration were evidenced in the placental labyrinth zone (Lz) of ICompromised and high-ZIKV-ICompetent mice but not in low-ZIKV-C57BL/6 mice. In addition, decreased placental expression of the drug transporters P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and the lipid transporter Abca1 was detected in all ZIKV-infected groups, but Bcrp and Abca1 were only reduced in ICompromised and high-ZIKV ICompetent mice. Our data indicate that gestational ZIKV infection triggers specific proinflammatory responses and affects placental turnover and transporter expression in a manner dependent on virus concentration and maternal immune status. Placental damage may impair proper fetal-maternal exchange function and fetal growth/survival, likely contributing to congenital Zika syndrome. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16643224
Volume :
12
Database :
Complementary Index
Journal :
Frontiers in Immunology
Publication Type :
Academic Journal
Accession number :
150445553
Full Text :
https://doi.org/10.3389/fimmu.2021.680246