Back to Search Start Over

COMMD10 inhibits tumor progression and induces apoptosis by blocking NF‐κB signal and values up BCLC staging in predicting overall survival in hepatocellular carcinoma.

Authors :
Yang, Mi
Wu, Xixi
Li, Lu
Li, Shaoqun
Li, Nan
Mao, Mengyuan
Pan, Suming
Du, Richang
Wang, Xiaoqing
Chen, Min
Xiao, Nanjie
Zhu, Xiaohui
He, Guoyang
Zhang, Longshan
Huang, Weiqiang
Pan, Hua
Deng, Lan
Chen, Longhua
Liang, Li
Guan, Jian
Source :
Clinical & Translational Medicine; May2021, Vol. 11 Issue 5, p1-20, 20p
Publication Year :
2021

Abstract

Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide. Currently, there is limited knowledge of dysregulation of cellular proliferation and apoptosis that contribute to the malignant phenotype in HCC. Copper metabolism gene MURR1 domain 10 (COMMD10) is initially identified as a suppressor gene in the pathogenesis of HCC in our observations. Here we aimed to explore its function and prognostic value in the progression of HCC. Methods: Functional experiments were performed to explore the role of COMMD10 in HCC. The molecular mechanisms of COMMD10 were determined by luciferase assay, immunofluorescence, and immunoprecipitation. The nomogram was based on a retrospective and multicenter study of 516 patients who were pathologically diagnosed with HCC from three Chinese hospitals. The predictive accuracy and discriminative ability of the nomogram were determined by a C‐index and calibration curve and were compared with COMMD10 and the Barcelona Clinic Liver Cancer (BCLC) staging system. The primary endpoint was overall survival (OS). Results: COMMD10 expression was significantly lower in HCC than that in normal liver tissues. In vitro and in vivo experiments revealed that COMMD10 suppressed cell proliferation and induced apoptosis in HCC. Mechanistically, COMMD10 inhibits TNFα mediated ubiquitination of IκBα and p65 nuclear translocation through the combination of COMMD10‐N terminal to the Rel homology domain of p65, which inhibited NF‐κB activity and increased expression of cleaved caspase9/3 in HCC. Clinically, COMMD10 stratifies early‐stage HCC patients into two risk groups with significantly different OS. Additionally, the nomogram based on COMMD10 and BCLC stage yielded more accuracy than BCLC stage alone for predicting OS of HCC patients in three cohorts. Conclusions: COMMD10 suppresses proliferation and promotes apoptosis by inhibiting NF‐κB signaling and values up BCLC staging in predicting OS, which provides evidence for the identification of potential therapeutic targets and the accurate prediction of prognosis for patients with HCC. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20011326
Volume :
11
Issue :
5
Database :
Complementary Index
Journal :
Clinical & Translational Medicine
Publication Type :
Academic Journal
Accession number :
150672584
Full Text :
https://doi.org/10.1002/ctm2.403