Back to Search Start Over

Overcoming the water oxidative limit for ultra-high-workfunction hole-doped polymers.

Authors :
Koh, Qi-Mian
Tang, Cindy Guanyu
Ang, Mervin Chun-Yi
Choo, Kim-Kian
Seah, Qiu-Jing
Png, Rui-Qi
Chua, Lay-Lay
Ho, Peter K. H.
Source :
Nature Communications; 6/7/2021, Vol. 12 Issue 1, p1-10, 10p
Publication Year :
2021

Abstract

It is widely thought that the water-oxidation reaction limits the maximum work function to about 5.25 eV for hole-doped semiconductors exposed to the ambient, constrained by the oxidation potential of air-saturated water. Here, we show that polymer organic semiconductors, when hole-doped, can show work functions up to 5.9 eV, and yet remain stable in the ambient. We further show that de-doping of the polymer is not determined by the oxidation of bulk water, as previously thought, due to its general absence, but by the counter-balancing anion and its ubiquitously hydrated complexes. The effective donor levels of these species, representing the edge of the 'chemical' density of states, can be depressed to about 6.0 eV below vacuum level. This can be achieved by raising the oxidation potential for hydronium generation, using large super-acid anions that are themselves also stable against oxidation. In this way, we demonstrate that poly(fluorene-alt-triarylamine) derivatives with tethered perfluoroalkyl-sulfonylimidosulfonyl anions can provide ambient solution-processability directly in the ultrahigh-workfunction hole-doped state to give films with good thermal stability. These results lay the path for design of soft materials for battery, bio-electronic and thermoelectric applications. Realizing ultra-high work functions (UHWFs) in hole-doped polymer semiconductors remains a challenge due to water-oxidation reactions. Here, the authors determine the role of water-anion complexes in limiting the work function and develop a design strategy for realizing UHWF polymers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
150747616
Full Text :
https://doi.org/10.1038/s41467-021-23347-x