Back to Search Start Over

Durability of Blended Cements Made with Reactive Aggregates.

Authors :
Menéndez, Esperanza
Sanjuán, Miguel Ángel
García-Roves, Ricardo
Argiz, Cristina
Recino, Hairon
Source :
Materials (1996-1944); Jun2021, Vol. 14 Issue 11, p2948, 1p
Publication Year :
2021

Abstract

Featured Application: In this paper, blended cements are proposed as an effective means of meeting the needs of mitigating climatic change. This proposal is a two-pronged strategy, i.e., durable and sustainable. The pozzolanic reaction of four binders is assessed, which is related to an alkali–silica reaction (ASR). Thanks to the findings made here, mix-design optimization can be performed. Alkali–silica reaction (ASR) is a swelling reaction that occurs in concrete structures over time between the reactive amorphous siliceous aggregate particles and the hydroxyl ions of the hardened concrete pore solution. The aim of this paper is to assess the effect of pozzolanic Portland cements on the alkali–silica reaction (ASR) evaluated from two different points of view: (i) alkali-silica reaction (ASR) abatement and (ii) climatic change mitigation by clinker reduction, i.e., by depleting its emissions. Open porosity, SEM microscopy, compressive strength and ASR-expansion measurements were performed in mortars made with silica fume, siliceous coal fly ash, natural pozzolan and blast-furnace slag. The main contributions are as follows: (i) the higher the content of reactive silica in the pozzolanic material, the greater the ASR inhibition level; (ii) silica fume and coal fly ash are the best Portland cement constituents for ASR mitigation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
14
Issue :
11
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
150829156
Full Text :
https://doi.org/10.3390/ma14112948