Back to Search Start Over

A Design Method of Sparse Array with High Degrees of Freedom Based on Fourth-Order Cumulants.

Authors :
Mei, Fengtong
Wang, Daming
Jian, Chunxiao
Wang, Yinsheng
Cui, Weijia
Source :
Mathematical Problems in Engineering; 7/2/2021, p1-13, 13p
Publication Year :
2021

Abstract

Recently, the design of sparse linear array for direction of arrival (DOA) estimation of non-Gaussian signals has attracted considerable interest due to the fact that the fourth-order difference coarray offered by non-Gaussian significantly increases the aperture of a virtual linear array, which improves the performance of DOA estimation. In this paper, a super four-level nested array (S-FL-NA) configuration based on fourth-order cumulants (FOC) is proposed. The S-FL-NA consists of uniform linear arrays which have different interelement spacing. The proposed array configuration is designed based on interelement spacing, which, for a given number of sensors, is uniquely determined by a closed-form expression. We also derive the closed-form expression for the degrees of freedom (DOFs) of the proposed array. The optimal distribution of the number of sensors in each uniform linear array of the proposed array is given for an arbitrary number of sensors. Compared with the existing sparse arrays, the proposed array can provide a higher number of degrees of freedom and a larger physical array aperture. In addition, to improve the calculation speed of the fourth-order cumulant matrix, we simplify the FOC matrix by removing some redundancy. Numerical simulations are conducted to verify the superiority of the S-FL-NA over other sparse arrays. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1024123X
Database :
Complementary Index
Journal :
Mathematical Problems in Engineering
Publication Type :
Academic Journal
Accession number :
151207877
Full Text :
https://doi.org/10.1155/2021/9915963