Back to Search Start Over

Compound coastal flood risk in a semi-arid urbanized region: The implications of copula choice, sampling, and infrastructure.

Authors :
Lucey, Joseph T. D.
Gallien, Timu W.
Source :
Natural Hazards & Earth System Sciences Discussions; 8/12/2021, p1-33, 33p
Publication Year :
2021

Abstract

Sea level rise will increase the frequency and severity of coastal flooding events. Compound coastal flooding is characterized by multiple flooding pathways (i.e., high offshore water levels, streamflow, energetic waves, precipitation) acting concurrently. This study explores the joint flood risks caused by the co-occurrence of high marine water levels and precipitation in a highly urbanized semi-arid, tidally dominated region. A novel structural function developed from the multivariate analysis is proposed to consider the implications of flood control infrastructure in compound coastal flood risk assessments. Univariate statistics are analyzed for individual sites and events. Conditional, and joint probabilities are developed using a range of copulas and sampling methods. The Independent, and Cubic copulas produced poor results while the Fischer-Kock, and Roch-Alegre generally produced robust results across a range of sampling methods. The impacts of sampling are considered using annual maximum, annual coinciding, wet season monthly coinciding, and wet season monthly maximum sampling. Although, annual maximum sampling is commonly recommended for characterizing compound events, this work suggests annual maximum sampling does not produce "worst-case" event pairs and substantially underestimates marine water levels for extreme events. Wet season coinciding water level and precipitation pairs benefit from a dramatic increase in available data, improved goodness of fit statistics, and provide a range of physically realistic pairs. Wet season coinciding sampling may provide a more accurate compound flooding risk characterization for long return periods in semi-arid regions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21959269
Database :
Complementary Index
Journal :
Natural Hazards & Earth System Sciences Discussions
Publication Type :
Academic Journal
Accession number :
151996055
Full Text :
https://doi.org/10.5194/nhess-2021-241