Back to Search
Start Over
Lp estimates for multilinear convolution operators defined with spherical measure.
- Source :
- Bulletin of the London Mathematical Society; Aug2021, Vol. 53 Issue 4, p1045-1060, 16p
- Publication Year :
- 2021
-
Abstract
- Let σ=(σ1,σ2,⋯,σn)∈Sn−1 and dσ denote the normalized Lebesgue measure on Sn−1,n⩾2. For functions f1,f2,⋯,fn defined on R, consider the multilinear operator given by T(f1,f2,⋯,fn)(x)=∫Sn−1∏j=1nfj(x−σj)dσ,x∈R.In this paper, we obtain necessary and sufficient conditions on exponents p1,p2,⋯,pn and r for which the operator T is bounded from ∏j=1nLpj(R)→Lr(R), where 1⩽pj,r⩽∞,j=1,2,⋯,n. This generalizes the results obtained in (Bak and Shim, J. Funct. Anal. 157 (1998) 534–553; Oberlin, Trans. Amer. Math. Soc. 310 (1988) 821–835). [ABSTRACT FROM AUTHOR]
- Subjects :
- MULTILINEAR algebra
LEBESGUE measure
NORMALIZED measures
EXPONENTS
MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 00246093
- Volume :
- 53
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Bulletin of the London Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 152007431
- Full Text :
- https://doi.org/10.1112/blms.12483