Back to Search Start Over

Lp estimates for multilinear convolution operators defined with spherical measure.

Authors :
Shrivastava, Saurabh
Shuin, Kalachand
Source :
Bulletin of the London Mathematical Society; Aug2021, Vol. 53 Issue 4, p1045-1060, 16p
Publication Year :
2021

Abstract

Let σ=(σ1,σ2,⋯,σn)∈Sn−1 and dσ denote the normalized Lebesgue measure on Sn−1,n⩾2. For functions f1,f2,⋯,fn defined on R, consider the multilinear operator given by T(f1,f2,⋯,fn)(x)=∫Sn−1∏j=1nfj(x−σj)dσ,x∈R.In this paper, we obtain necessary and sufficient conditions on exponents p1,p2,⋯,pn and r for which the operator T is bounded from ∏j=1nLpj(R)→Lr(R), where 1⩽pj,r⩽∞,j=1,2,⋯,n. This generalizes the results obtained in (Bak and Shim, J. Funct. Anal. 157 (1998) 534–553; Oberlin, Trans. Amer. Math. Soc. 310 (1988) 821–835). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00246093
Volume :
53
Issue :
4
Database :
Complementary Index
Journal :
Bulletin of the London Mathematical Society
Publication Type :
Academic Journal
Accession number :
152007431
Full Text :
https://doi.org/10.1112/blms.12483