Back to Search
Start Over
A Functional Equation Originated from the Product in a Cubic Number Field.
- Source :
- Mediterranean Journal of Mathematics; Oct2021, Vol. 18 Issue 5, p1-14, 14p
- Publication Year :
- 2021
-
Abstract
- Let K be either R or C and α ∈ R . We determine the solutions f : R 3 → K of the following new parametric functional equation: f (x 1 x 2 + α y 1 z 2 + α y 2 z 1 , x 1 y 2 + x 2 y 1 + α z 1 z 2 , x 1 z 2 + x 2 z 1 + y 1 y 2) = f (x 1 , y 1 , z 1) f (x 2 , y 2 , z 2) , (x 1 , y 1 , z 1) , (x 2 , y 2 , z 2) ∈ R 3 , which results from the product of two numbers in a cubic free field. We equip R 3 with a binary operation to show that the non-zero solutions of this equation are monoid homomorphisms and we investigate our results to introduce and find the solutions of d'Alembert's functional equations with endomorphisms. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16605446
- Volume :
- 18
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Mediterranean Journal of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 152170034
- Full Text :
- https://doi.org/10.1007/s00009-021-01858-7