Cite
Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting.
MLA
Iantsen, Andrei, et al. “Convolutional Neural Networks for PET Functional Volume Fully Automatic Segmentation: Development and Validation in a Multi-Center Setting.” European Journal of Nuclear Medicine & Molecular Imaging, vol. 48, no. 11, Oct. 2021, pp. 3444–56. EBSCOhost, https://doi.org/10.1007/s00259-021-05244-z.
APA
Iantsen, A., Ferreira, M., Lucia, F., Jaouen, V., Reinhold, C., Bonaffini, P., Alfieri, J., Rovira, R., Masson, I., Robin, P., Mervoyer, A., Rousseau, C., Kridelka, F., Decuypere, M., Lovinfosse, P., Pradier, O., Hustinx, R., Schick, U., Visvikis, D., & Hatt, M. (2021). Convolutional neural networks for PET functional volume fully automatic segmentation: development and validation in a multi-center setting. European Journal of Nuclear Medicine & Molecular Imaging, 48(11), 3444–3456. https://doi.org/10.1007/s00259-021-05244-z
Chicago
Iantsen, Andrei, Marta Ferreira, Francois Lucia, Vincent Jaouen, Caroline Reinhold, Pietro Bonaffini, Joanne Alfieri, et al. 2021. “Convolutional Neural Networks for PET Functional Volume Fully Automatic Segmentation: Development and Validation in a Multi-Center Setting.” European Journal of Nuclear Medicine & Molecular Imaging 48 (11): 3444–56. doi:10.1007/s00259-021-05244-z.