Back to Search
Start Over
An n-ZnO/i-MoS2/p-Si heterojunction solar cell with an enhanced photoswitching response.
- Source :
- Journal of Computational Electronics; Oct2021, Vol. 20 Issue 5, p1851-1859, 9p
- Publication Year :
- 2021
-
Abstract
- An ZnO nanostructure and the MoS<subscript>2</subscript> switching mechanism in a heterostructure are applied in this work to improve the photoconversion efficiency of a solar cell. The carrier transport of MoS<subscript>2</subscript> at the MoS<subscript>2</subscript>/Si interface generates more electron–hole pairs. The photoswitching performance of the MoS<subscript>2</subscript> active layer with a thickness of 30 nm is increased by the effective light trapping of the ZnO nanostructure, achieving a short-circuit current density of 40.99 mA cm<superscript>−2</superscript> based on a surface recombination velocity of 0.2165 × 10<superscript>5</superscript> m s<superscript>−1</superscript> for electrons and 0.1901 × 10<superscript>5</superscript> m s<superscript>−1</superscript> for holes. The electron and hole mobility are found to be 100 cm<superscript>2</superscript> V<superscript>−1</superscript> s<superscript>−1</superscript> and 150 cm<superscript>2</superscript> V<superscript>−1</superscript> s<superscript>−1</superscript>, respectively. The Joule and Shockley–Read–Hall (SRH) heating rates are calculating using the steady-state method, yielding values on the magnitude of 10<superscript>13</superscript> and 10<superscript>12</superscript> W m<superscript>−3</superscript>, respectively. The thermal stability is improved because of the photoswitching characteristics of the MoS<subscript>2</subscript> with electron and hole lifetimes of 0.1 ns and the reduced SRH and Joule heating rates. Such combined use of both ZnO and MoS<subscript>2</subscript> nanostructures results in a photoconversion efficiency of 27.73%. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15698025
- Volume :
- 20
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Journal of Computational Electronics
- Publication Type :
- Academic Journal
- Accession number :
- 152767764
- Full Text :
- https://doi.org/10.1007/s10825-021-01769-6