Back to Search Start Over

A derivative-free optimisation method for global ocean biogeochemical models.

Authors :
Oliver, Sophy
Cartis, Coralia
Kriest, Iris
Tett, Simon
Khatiwala, Samar
Source :
Geoscientific Model Development Discussions; 9/30/2021, p1-24, 24p
Publication Year :
2021

Abstract

The performance of global ocean biogeochemical models, and the Earth System Models in which they are embedded, can be improved by systematic calibration of the parameter values against observations. However, such tuning is seldom undertaken as these models are computationally very expensive. Here we investigate the performance of DFO-LS, a local, derivative-free optimisation algorithm which has been designed for computationally expensive models with irregular model data misfit landscapes typical of biogeochemical models. We use DFO-LS to calibrate six parameters of a relatively complex global ocean biogeochemical model (MOPS) against synthetic dissolved oxygen, inorganic phosphate and inorganic nitrate "observations" from a reference run of the same model with a known parameter configuration. The performance of DFO-LS is compared with that of CMA-ES, another derivative-free algorithm that was applied in a previous study to the same model in one of the first successful attempts at calibrating a global model of this complexity. We find that DFO-LS successfully recovers 5 of the 6 parameters in approximately 40 evaluations of the misfit function (each one requiring a 3000 year run of MOPS to equilibrium), while CMA-ES needs over 1200 evaluations. Moreover, DFO-LS reached a "baseline" misfit, defined by observational noise, in just 11–14 evaluations, whereas CMA-ES required approximately 340 evaluations.We also find that the performance of DFO-LS is not significantly affected by observational sparsity, however fewer parameters were successfully optimised in the presence of observational uncertainty. The results presented here suggest that DFO-LS is sufficiently inexpensive and robust to apply to the calibration of complex, global ocean biogeochemical models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19919611
Database :
Complementary Index
Journal :
Geoscientific Model Development Discussions
Publication Type :
Academic Journal
Accession number :
152911431
Full Text :
https://doi.org/10.5194/gmd-2021-175