Back to Search Start Over

PARP Inhibition in Prostate Cancer With Homologous Recombination Repair Alterations.

Authors :
von Werdt, Alexander
Brandt, Laura
Schärer, Orlando D.
Rubin, Mark A.
Source :
JCO Precision Oncology; 10/22/2021, Vol. 5, p1639-1649, 11p
Publication Year :
2021

Abstract

PURPOSE: With the broad use of next-generation sequencing assays, it has become clear that mutations in DNA repair genes are more commonly found than previously reported. In advanced prostate cancer patients with BRCA 1/2 or ATM mutations, poly (ADP-ribose) polymerase inhibition (PARPi) causes an increased overall survival advantage compared with patients without these mutations. This review explores the advantages and limitations of PARPi treatment and its use beyond BRCA 1/2-altered tumors. Furthermore, it discusses the benefits of current biomarkers and what role functional biomarkers and organoids may play in addressing the involvement of homologous recombination repair mutations in tumor development and progression. METHODS: A systematic review was conducted in MEDLINE, National Library of Medicine, and ClinicalTrials.gov to identify studies published between January 1, 2016, and August 31, 2021. The search strategy incorporated terms for PARPi, BRCA, DNA damage, homologous recombination, organoids, patient-derived organoids, biomarker AND prostate cancer, breast cancer, ovarian cancer. RESULTS: A total of 261 records remained after duplicate removal, 69 of which were included in the qualitative synthesis. CONCLUSION: To improve the outcome of targeted therapy and increase sensitivity of tumor detection, patients should be repeatedly screened for DNA repair gene alterations and biomarkers. Future clinical studies should explore the use of PARPi beyond BRCA 1/2 mutations and focus on finding new synthetically lethal interactions. This review explores PARPi and its use for more than just BRCA1/2 altered tumors [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24734284
Volume :
5
Database :
Complementary Index
Journal :
JCO Precision Oncology
Publication Type :
Academic Journal
Accession number :
153178750
Full Text :
https://doi.org/10.1200/PO.21.00152