Back to Search Start Over

Bridging the Gap Between 2D and 3D Contexts in CT Volume for Liver and Tumor Segmentation.

Authors :
Song, Lei
Wang, Haoqian
Wang, Z. Jane
Source :
IEEE Journal of Biomedical & Health Informatics; Sep2021, Vol. 25 Issue 9, p3450-3459, 10p
Publication Year :
2021

Abstract

Automatic liver and tumor segmentation remain a challenging topic, which subjects to the exploration of 2D and 3D contexts in CT volume. Existing methods are either only focus on the 2D context by treating the CT volume as many independent image slices (but ignore the useful temporal information between adjacent slices), or just explore the 3D context lied in many little voxels (but damage the spatial detail in each slice). These factors lead an inadequate context exploration together for automatic liver and tumor segmentation. In this paper, we propose a novel full-context convolution neural network to bridge the gap between 2D and 3D contexts. The proposed network can utilize the temporal information along the Z axis in CT volume while retaining the spatial detail in each slice. Specifically, a 2D spatial network for intra-slice features extraction and a 3D temporal network for inter-slice features extraction are proposed separately and then are guided by the squeeze-and-excitation layer that allows the flow of 2D context and 3D temporal information. To address the severe class imbalance issue in the CT volume and meanwhile improve the segmentation performance, a loss function consisting of weighted cross-entropy and jaccard distance is proposed. During the network training, the 2D and 3D contexts are learned jointly in an end-to-end way. The proposed network achieves competitive results on the Liver Tumor Segmentation Challenge (LiTS) and the 3D-IRCADB datasets. This method should be a new promising paradigm to explore the contexts for liver and tumor segmentation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21682194
Volume :
25
Issue :
9
Database :
Complementary Index
Journal :
IEEE Journal of Biomedical & Health Informatics
Publication Type :
Academic Journal
Accession number :
153376760
Full Text :
https://doi.org/10.1109/JBHI.2021.3075752